Systematic Design Centering of Continuous Time Oversampling Converters
Abstract
Clock jitter is a fundamental problem in continuous-time Δ Σ modulators. While many approaches have been proposed to deal with this problem, finite-impulse-response (FIR) feedback is perhaps the most effective. It turns out that FIR feedback has other benefits—it improves the modulator's linearity for a given power dissipation, reduces the effect of the quantizer's data-dependent jitter, and enables the use of chopping "for free." It is an architectural technique that combines the benefits of single-bit and multi-bit operation, and has proven itself to be robust and scalable, applicable to Δ Σ data converters targeting a variety of specifications, and across process nodes. This work reviews the key challenges encountered in the design of high performance delta-sigma data converters, and describes the role of FIR feedback in addressing these challenges. The prospect of using FIR feedback to achieve wide bandwidths is examined, and promising directions are reviewed.
Keywords
- Oversampling
- FIR filter
- Jitter
- Excess delay
- Compensation
Notes
- 1.
This is similar to compensating a CTΔ ΣM for excess delay, where coefficient tuning and a direct path around the quantizer is usually needed [2, 20].
- 2.
Sampling rate of 1 Hz.
- 3.
The idea is the same as introducing zeros in a loop to stabilize a feedback system. In the time-domain, this corresponds to adding a derivative(s).
References
-
J. Cherry, W.M. Snelgrove, Clock jitter and quantizer metastability in continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II. Analog Digit. Signal Process 46(6), 661–676 (1999)
-
J.A. Cherry, Theory, practice, and fundamental performance limits of high speed data conversion using continuous-time delta-sigma modulators, Ph.D. dissertation, Carleton University, 1998
-
M. Ortmanns, F. Gerfers, Y. Manoli, A continuous-time Σ Δ modulator with reduced sensitivity to clock jitter through SCR feedback. IEEE Trans. Circuits Syst. I Reg. Papers 52(5), 875–884 (2005)
-
S. Pavan, Alias rejection of continuous-time delta-sigma modulators with switched-capacitor feedback DACs. IEEE Trans. Circuits Syst. I Reg. Papers 58(2), 233–243 (2011)
-
O. Oliaei, Sigma-delta modulator with spectrally shaped feedback. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 50(9), 518–530 (2003)
-
B.M. Putter, Σ Δ ADC with finite impulse response feedback DAC, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, Piscataway, 2004), pp. 76–77
-
S. Loeda, J. Harrison, F. Pourchet, A. Adams, A 10/20/30/40 MHz feedforward FIR DAC continuous-time Δ Σ ADC with robust blocker performance for radio receivers. IEEE J. Solid-State Circuits 51(4), 860–870 (2016)
-
P. Shettigar, S. Pavan, Design techniques for wideband single-bit continuous-time Δ Σ modulators with FIR feedback DACs. IEEE J. Solid-State Circuits 47(12), 2865–2879 (2012)
-
D.K. Su, B.A. Wooley, A CMOS oversampling D/A converter with a current-mode semidigital reconstruction filter. IEEE J. Solid-State Circuits 28(12), 1224–1233 (1993)
-
P. Shettigar, S. Pavan, A 15 mW 3.6 GS/s CT delta-sigma ADC with 36 MHz bandwidth and 83 dB dynamic range in 90 nm CMOS , in Digest of Technical Papers, International Solid State Circuits Conference (2008), pp. 498–631
-
V. Srinivasan, V. Wang, P. Satarzadeh, B. Haroun, M. Corsi, A 20 mW 61 dB SNDR (60MHz BW) 1b 3rd-order continuous-time delta-sigma modulator clocked at 6 GHz in 45 nm CMOS, in Digest of Technical Papers, International Solid-State Circuits Conference (ISSCC) (2012), pp. 158–160
-
S. Zeller, C. Muenker, R. Weigel, U. Ussmueller, A 0.039 mm2 inverter-based 1.82 mW 68.6 dB-SNDR 10 MHz-BW CT-Δ Σ-ADC in 65 nm CMOS using power-and area-efficient design techniques. IEEE J. Solid-State Circuits 49(7), 1548–1560 (2014)
-
Y. Zhang, C.-H. Chen, T. He, G.C. Temes, A continuous-time delta-sigma modulator for biomedical ultrasound beamformer using digital ELD compensation and FIR feedback. IEEE Trans. Circuits Syst. I Reg. Papers 62(7), 1689–1698 (2015)
-
S. Billa, A. Sukumaran, S. Pavan, Analysis and design of continuous-time delta–sigma converters incorporating chopping. IEEE J. Solid-State Circuits 52(9), 2350–2361 (2017)
-
A. Jain, S. Pavan, A 13.3 mW 60 MHz bandwidth, 76 dB DR 6 GS/s CTΔ ΣM with time-interleaved FIR feedback, in Proceedings of the Symposium on VLSI Circuits (IEEE, Piscataway, 2016), pp. C256–C257
-
A. Sukumaran, S. Pavan, Design techniques for audio single-bit continuous-time delta sigma modulators with FIR feedback. IEEE J. Solid State Circuits 47(11), 1–15 (2014)
-
J. Gealow, M. Ashburn, C.-H. Lou, S. Ho, P. Riehl, A. Shabra, J. Silva, Q. Yu, A 2.8 mW Δ Σ ADC with 83 dB DR and 1.92 MHz BW using FIR outer feedback and TIA-based integrator, in Proceedings of the Symposium on VLSI Circuits (IEEE, Piscataway, 2011), pp. 42–43
-
S. Pavan, Finite-impulse-response (FIR) feedback in continuous-time delta-sigma converters, in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC) (IEEE, Piscataway, 2018), pp. 1–8
-
S. Billa, A. Sukumaran, S. Pavan, A 280μW 24kHz-BW 98.5 dB-SNDR chopped single-bit CTDSM achieving < 10 Hz 1∕f noise corner without chopping artifacts, in Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2016), pp. 276–277
-
S. Pavan, Excess loop delay compensation in continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II Express Briefs 55(11), 1119–1123 (2008)
-
S. Pavan, Continuous-time delta-sigma modulator design using the method of moments. IEEE Trans. Circuits Syst. I Reg. Papers 61(6), 1629–1637 (2014)
-
S. Pavan, R. Schreier, G. Temes, Understanding Delta-Sigma Data Converters, 2nd edn. (Wiley-IEEE Press, Piscataway, 2017)
-
S. Pavan, Systematic design centering of continuous time oversampling converters. IEEE Trans. Circuits Syst. II Express Briefs 57(3), 158–162 (2010)
-
S. Ho, C.-L. Lo, J. Ru, J. Zhao, A 23 mW, 73 dB dynamic range, 80 MHz BW continuous-time delta-sigma modulator in 20 nm CMOS. IEEE J. Solid-State Circuits 50(4), 908–919 (2015)
-
Y.-S. Shu, S. Ho, H.-H. Chen, B. Narasimhan, K.-H.L. Loh, Signal processing and analog/RF circuit design: cross-discipline interactions and technical challenges, in APSIPA Transactions on Signal and Information Processing, vol. 5 (Cambridge University Press, Cambridge, 2016)
-
J.-K. Cho, S. Woo, A 6-mW, 70.1-dB SNDR, and 20-MHz BW continuous-time sigma-delta modulator using low-noise high-linearity feedback DAC. IEEE Trans. Very Large Scale Integr. Syst. 25(5), 1742–1755 (2017)
-
D.-Y. Yoon, S. Ho, H.-S. Lee, An 85dB-DR 74.6 dB-SNDR 50MHz-BW CT MASH Δ Σ modulator in 28nm CMOS, in Proceedings of the International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2015), pp. 1–3.
-
D.-Y. Yoon, S. Ho, H.-S. Lee, A continuous-time Sturdy-MASH Δ Σ modulator in 28 nm CMOS. IEEE J. Solid-State Circuits 50(12), 2880–2890 (2015)
-
R. Kaald, T. Eggen, T. Ytterdal, A 1 MHz BW 34.2 fJ/step continuous time delta sigma modulator with an integrated mixer for cardiac ultrasound. IEEE Trans. Biomed. Circuits Syst. 11(1), 234–243 (2017)
-
A. Jain, S. Pavan, Continuous-time delta-sigma modulators with time-interleaved FIR feedback. IEEE Trans. Circuits Syst. I Reg. Papers 65(2), 434–443 (2018)
-
C.C. Enz, G.C. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)
-
S. Pavan, Analysis of chopped integrators, and its application to continuous-time Delta-Sigma modulator design. IEEE Trans. Circuits Syst. I Reg. Papers 64(9), 1953–65 (2017)
-
D.R. Welland, B.P. Del Signore, D.A. Kerth, Delta-sigma analog-to-digital converter with chopper stabilization at the sampling frequency, US Patent 5,039,989, 1991
-
R. Theertham, S. Pavan, Unified Analysis, Modeling, and Simulation of Chopping Artifacts in Continuous-Time Delta-Sigma Modulators. IEEE Trans. Circuits Syst. I. Reg. Papers 66(8), 2831–2842 (2019)
-
R. Theertham, P. Kootala, S. Billa, S. Pavan, A 24mW Chopped CTDSM Achieving 103.5 dB SNDR and 107.5 dB DR in a 250kHz Bandwidth. Proceedings of the Symposium on VLSI Circuits, Kyoto, C226–C227 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Pavan, S. (2020). Continuous-Time Delta-Sigma Converters with Finite-Impulse-Response (FIR) Feedback. In: Baschirotto, A., Harpe, P., Makinwa, K. (eds) Next-Generation ADCs, High-Performance Power Management, and Technology Considerations for Advanced Integrated Circuits. Springer, Cham. https://doi.org/10.1007/978-3-030-25267-0_5
Download citation
- .RIS
- .ENW
- .BIB
-
DOI : https://doi.org/10.1007/978-3-030-25267-0_5
-
Published:
-
Publisher Name: Springer, Cham
-
Print ISBN: 978-3-030-25266-3
-
Online ISBN: 978-3-030-25267-0
-
eBook Packages: Engineering Engineering (R0)
Source: https://link.springer.com/chapter/10.1007/978-3-030-25267-0_5
0 Response to "Systematic Design Centering of Continuous Time Oversampling Converters"
Post a Comment