Low Carb High Fat Vs Plant Based Diet

Abstract

The carbohydrate–insulin model of obesity posits that high-carbohydrate diets lead to excess insulin secretion, thereby promoting fat accumulation and increasing energy intake. Thus, low-carbohydrate diets are predicted to reduce ad libitum energy intake as compared to low-fat, high-carbohydrate diets. To test this hypothesis, 20 adults aged 29.9 ± 1.4 (mean ± s.e.m.) years with body mass index of 27.8 ± 1.3 kg m−2 were admitted as inpatients to the National Institutes of Health Clinical Center and randomized to consume ad libitum either a minimally processed, plant-based, low-fat diet (10.3% fat, 75.2% carbohydrate) with high glycemic load (85 g 1,000 kcal−1) or a minimally processed, animal-based, ketogenic, low-carbohydrate diet (75.8% fat, 10.0% carbohydrate) with low glycemic load (6 g 1,000 kcal−1) for 2 weeks followed immediately by the alternate diet for 2 weeks. One participant withdrew due to hypoglycemia during the low-carbohydrate diet. The primary outcomes compared mean daily ad libitum energy intake between each 2-week diet period as well as between the final week of each diet. We found that the low-fat diet led to 689 ± 73 kcal d−1 less energy intake than the low-carbohydrate diet over 2 weeks (P < 0.0001) and 544 ± 68 kcal d−1 less over the final week (P < 0.0001). Therefore, the predictions of the carbohydrate–insulin model were inconsistent with our observations. This study was registered on ClinicalTrials.gov as NCT03878108.

Access options

Subscribe to Journal

Get full journal access for 1 year

55,14 €

only 4,60 € per issue

All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The study protocol, de-identified individual data, and statistical analysis code for the results reported in this manuscript will be posted on the Open Science Framework website (https://osf.io/fjykq/) and is freely available without restrictions.

References

  1. 1.

    Hall, K. D. Did the food environment cause the obesity epidemic? Obesity 26, 11–13 (2018).

    PubMed  Google Scholar

  2. 2.

    Ludwig, D. S. & Ebbeling, C. B. The carbohydrate-insulin model of obesity: beyond "calories in, calories out". JAMA Intern. Med. 178, 1098–1103 (2018).

    PubMed  PubMed Central  Google Scholar

  3. 3.

    Ludwig, D. S. & Friedman, M. I. Increasing adiposity: consequence or cause of overeating? JAMA 311, 2167–2168 (2014).

    CAS  PubMed  Google Scholar

  4. 4.

    Blundell, J. E. & MacDiarmid, J. I. Fat as a risk factor for overconsumption: satiation, satiety, and patterns of eating. J. Am. Diet. Assoc. 97, S63–S69 (1997).

    CAS  PubMed  Google Scholar

  5. 5.

    Blundell, J. E. & Macdiarmid, J. I. Passive overconsumption. Fat intake and short-term energy balance. Ann. NY Acad. Sci. 827, 392–407 (1997).

    CAS  PubMed  Google Scholar

  6. 6.

    Bray, G. A. & Popkin, B. M. Dietary fat intake does affect obesity! Am. J. Clin. Nutr. 68, 1157–1173 (1998).

    CAS  PubMed  Google Scholar

  7. 7.

    Stubbs, R. J. Nutrition Society Medal Lecture. Appetite, feeding behaviour and energy balance in human subjects. Proc. Nutr. Soc. 57, 341–356 (1998).

    CAS  PubMed  Google Scholar

  8. 8.

    Hopkins, M., Gibbons, C., Caudwell, P., Blundell, J. E. & Finlayson, G. Differing effects of high-fat or high-carbohydrate meals on food hedonics in overweight and obese individuals. Br. J. Nutr. 115, 1875–1884 (2016).

    CAS  PubMed  Google Scholar

  9. 9.

    Freedhoff, Y. & Hall, K. D. Weight loss diet studies: we need help not hype. Lancet 388, 849–851 (2016).

    PubMed  Google Scholar

  10. 10.

    Das, S. K. et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am. J. Clin. Nutr. 85, 1023–1030 (2007).

    CAS  PubMed  Google Scholar

  11. 11.

    Hall, K. D., Guo, J. & Speakman, J. R. Do low-carbohydrate diets increase energy expenditure? Int. J. Obes. https://doi.org/10.1038/s41366-019-0456-3 (2019).

  12. 12.

    Stinson, E. J. et al. Is dietary nonadherence unique to obesity and weight loss? Results from a randomized clinical trial. Obesity 28, 2020–2027 (2020).

    PubMed  Google Scholar

  13. 13.

    Boden, G., Sargrad, K., Homko, C., Mozzoli, M. & Stein, T. P. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann. Intern. Med. 142, 403–411 (2005).

    CAS  PubMed  Google Scholar

  14. 14.

    Lissner, L., Levitsky, D. A., Strupp, B. J., Kalkwarf, H. J. & Roe, D. A. Dietary fat and the regulation of energy intake in human subjects. Am. J. Clin. Nutr. 46, 886–892 (1987).

    CAS  PubMed  Google Scholar

  15. 15.

    Stubbs, R. J., Harbron, C. G., Murgatroyd, P. R. & Prentice, A. M. Covert manipulation of dietary fat and energy density: effect on substrate flux and food intake in men eating ad libitum. Am. J. Clin. Nutr. 62, 316–329 (1995).

    CAS  PubMed  Google Scholar

  16. 16.

    Gibson, A. A. et al. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes. Rev. 16, 64–76 (2015).

    CAS  PubMed  Google Scholar

  17. 17.

    Paoli, A., Bosco, G., Camporesi, E. M. & Mangar, D. Ketosis, ketogenic diet and food intake control: a complex relationship. Front. Psychol. 6, 27 (2015).

    PubMed  PubMed Central  Google Scholar

  18. 18.

    Stubbs, R. J., Ritz, P., Coward, W. A. & Prentice, A. M. Covert manipulation of the ratio of dietary fat to carbohydrate and energy density: effect on food intake and energy balance in free-living men eating ad libitum. Am. J. Clin. Nutr. 62, 330–337 (1995).

    CAS  PubMed  Google Scholar

  19. 19.

    Hall, K. D. et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 30, 67–77.e63 (2019).

    CAS  PubMed  PubMed Central  Google Scholar

  20. 20.

    Shintani, T. T., Hughes, C. K., Beckham, S. & O'Connor, H. K. Obesity and cardiovascular risk intervention through the ad libitum feeding of traditional Hawaiian diet. Am. J. Clin. Nutr. 53, 1647s–1651s (1991).

    CAS  PubMed  Google Scholar

  21. 21.

    Johnstone, A. M., Horgan, G. W., Murison, S. D., Bremner, D. M. & Lobley, G. E. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am. J. Clin. Nutr. 87, 44–55 (2008).

    CAS  PubMed  Google Scholar

  22. 22.

    Shimy, K. J. et al. Effects of dietary carbohydrate content on circulating metabolic fuel availability in the postprandial state. J. Endocr. Soc. https://doi.org/10.1210/jendso/bvaa062 (2020).

  23. 23.

    Sherrier, M. & Li, H. The impact of keto-adaptation on exercise performance and the role of metabolic-regulating cytokines. Am. J. Clin. Nutr. 110, 562–573 (2019).

    PubMed  Google Scholar

  24. 24.

    Hall, K. D. et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 104, 324–333 (2016).

    CAS  PubMed  PubMed Central  Google Scholar

  25. 25.

    Mohorko, N. et al. Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutr. Res. 62, 64–77 (2019).

    CAS  PubMed  Google Scholar

  26. 26.

    Phinney, S. D., Bistrian, B. R., Evans, W. J., Gervino, E. & Blackburn, G. L. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 32, 769–776 (1983).

    CAS  PubMed  Google Scholar

  27. 27.

    Phinney, S. D. et al. Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet. J. Clin. Invest. 66, 1152–1161 (1980).

    CAS  PubMed  PubMed Central  Google Scholar

  28. 28.

    Georgiou, E. et al. Body composition changes in chronic hemodialysis patients before and after hemodialysis as assessed by dual-energy X-ray absorptiometry. Metabolism 46, 1059–1062 (1997).

    CAS  PubMed  Google Scholar

  29. 29.

    Going, S. B. et al. Detection of small changes in body composition by dual-energy X-ray absorptiometry. Am. J. Clin. Nutr. 57, 845–850 (1993).

    CAS  PubMed  Google Scholar

  30. 30.

    Horber, F. F., Thomi, F., Casez, J. P., Fonteille, J. & Jaeger, P. Impact of hydration status on body composition as measured by dual energy X-ray absorptiometry in normal volunteers and patients on haemodialysis. Br. J. Radiol. 65, 895–900 (1992).

    CAS  PubMed  Google Scholar

  31. 31.

    Toomey, C. M., McCormack, W. G. & Jakeman, P. The effect of hydration status on the measurement of lean tissue mass by dual-energy X-ray absorptiometry. Eur. J. Appl. Physiol. 117, 567–574 (2017).

    PubMed  Google Scholar

  32. 32.

    Taylor, J. R. An Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements. (University Science Books, 1982).

  33. 33.

    Hall, K. D. et al. Methodologic considerations for measuring energy expenditure differences between diets varying in carbohydrate using the doubly labeled water method. Am. J. Clin. Nutr. https://doi.org/10.1093/ajcn/nqy390 (2019).

  34. 34.

    Hall, K. D. et al. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. Cell Metab. 22, 427–436 (2015).

    CAS  PubMed  PubMed Central  Google Scholar

  35. 35.

    Leidy, H. J. et al. The role of protein in weight loss and maintenance. Am. J. Clin. Nutr. 101, 1320S–1329S (2015).

    CAS  PubMed  Google Scholar

  36. 36.

    Sandesara, P. B., Virani, S. S., Fazio, S. & Shapiro, M. D. The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev. 40, 537–557 (2019).

    PubMed  Google Scholar

  37. 37.

    Xia, J. & Yin, C. Glucose variability and coronary artery disease. Heart Lung Circ. 28, 553–559 (2019).

    PubMed  Google Scholar

  38. 38.

    Sun, S., Li, H., Chen, J. & Qian, Q. Lactic acid: no longer an inert and end-product of glycolysis. Physiology 32, 453–463 (2017).

    CAS  PubMed  Google Scholar

  39. 39.

    Raubenheimer, D. & Simpson, S. J. Protein leverage: theoretical foundations and ten points of clarification. Obesity 27, 1225–1238 (2019).

    CAS  PubMed  Google Scholar

  40. 40.

    Clark, M. J. & Slavin, J. L. The effect of fiber on satiety and food intake: a systematic review. J. Am. Coll. Nutr. 32, 200–211 (2013).

    CAS  PubMed  Google Scholar

  41. 41.

    Hervik, A. K. & Svihus, B. The role of fiber in energy balance. J. Nutr. Metab. 2019, 4983657 (2019).

    PubMed  PubMed Central  Google Scholar

  42. 42.

    Smethers, A. D. & Rolls, B. J. Dietary management of obesity: cornerstones of healthy eating patterns. Med. Clin. North Am. 102, 107–124 (2018).

    PubMed  PubMed Central  Google Scholar

  43. 43.

    Rolls, B. J. The relationship between dietary energy density and energy intake. Physiol. Behav. 97, 609–615 (2009).

    CAS  PubMed  PubMed Central  Google Scholar

  44. 44.

    Ledikwe, J. H. et al. Dietary energy density determined by eight calculation methods in a nationally representative United States population. J. Nutr. 135, 273–278 (2005).

    CAS  PubMed  Google Scholar

  45. 45.

    Martinez Steele, E. et al. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open 6, e009892 (2016).

    PubMed  PubMed Central  Google Scholar

  46. 46.

    Rauber, F. et al. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients https://doi.org/10.3390/nu10050587 (2018).

  47. 47.

    de Graaf, C. & Kok, F. J. Slow food, fast food and the control of food intake. Nat. Rev. Endocrinol. 6, 290–293 (2010).

    PubMed  Google Scholar

  48. 48.

    Forde, C. G., Mars, M. & de Graaf, K. Ultra-processing or oral processing? A role for energy density and eating rate in moderating energy intake from processed foods. Curr. Dev. Nutr. 4, nzaa019 (2020).

    PubMed  PubMed Central  Google Scholar

  49. 49.

    Monteiro, C. A. et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 22, 936–941 (2019).

    PubMed  Google Scholar

  50. 50.

    Flood, A. et al. Methodology for adding glycemic load values to the National Cancer Institute diet history questionnaire database. J. Am. Diet. Assoc. 106, 393–402 (2006).

    PubMed  Google Scholar

  51. 51.

    Harris, P. A. et al. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).

    PubMed  Google Scholar

  52. 52.

    Ouwerkerk, R., Pettigrew, R. I. & Gharib, A. M. Liver metabolite concentrations measured with 1H MR spectroscopy. Radiology 265, 565–575 (2012).

    PubMed  PubMed Central  Google Scholar

  53. 53.

    Freedson, P. S., Melanson, E. & Sirard, J. Calibration of the Computer Science and Applications Inc. accelerometer. Med. Sci. Sports Exerc. 30, 777–781 (1998).

    CAS  PubMed  Google Scholar

  54. 54.

    Schoffelen, P. F. & Westerterp, K. R. Intra-individual variability and adaptation of overnight- and sleeping metabolic rate. Physiol. Behav. 94, 158–163 (2008).

    CAS  PubMed  Google Scholar

  55. 55.

    Tarasuk, V. & Beaton, G. H. Day-to-day variation in energy and nutrient intake: evidence of individuality in eating behaviour? Appetite 18, 43–54 (1992).

    CAS  PubMed  Google Scholar

  56. 56.

    Bray, G. A., Flatt, J. P., Volaufova, J., Delany, J. P. & Champagne, C. M. Corrective responses in human food intake identified from an analysis of 7-d food-intake records. Am. J. Clin. Nutr. 88, 1504–1510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar

  57. 57.

    Edholm, O. G. et al. Food intake and energy expenditure of army recruits. Br. J. Nutr. 24, 1091–1107 (1970).

    CAS  PubMed  Google Scholar

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the NIH, National Institute of Diabetes & Digestive & Kidney Diseases under award number 1ZIADK013037. P.V.J. is supported by the National Institute of Nursing Research under award number 1ZIANR000035-01, The Office of Workforce Diversity and the Rockefeller University Heilbrunn Nurse Scholar Award. We thank the nursing and nutrition staff at the NIH Metabolic Clinical Research Unit for their invaluable assistance with this study. We thank K. Klatt, J. Speakman and E. Weiss for helpful comments. We thank the study participants who volunteered to participate in this demanding protocol.

Author information

Affiliations

  1. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA

    Kevin D. Hall, Juen Guo, Amber B. Courville, Robert Brychta, Kong Y. Chen, Valerie Darcey, Ahmed M. Gharib, Isabelle Gallagher, Rebecca Howard, Lauren Milley, Ronald Ouwerkerk, Irene Rozga, Alex Schick, Michael Stagliano, Mary Walter, Peter Walter & Stephanie T. Chung

  2. National Institutes of Health Clinical Center, Bethesda, MD, USA

    James Boring, Klaudia Raisinger, Stephan Torres & Shanna Yang

  3. Singapore Institute for Food and Biotechnology Innovation, Singapore, Singapore

    Ciaran G. Forde

  4. National Institute of Nursing Research, Bethesda, MD, USA

    Paule V. Joseph

  5. National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA

    Paule V. Joseph

Contributions

K.D.H. designed the study. K.D.H. and J.G. analyzed the data. A.C. and S.Y. designed the diets and measured food and beverage intake with the assistance of J.B. and S.T. R.B. and K.Y.C. performed the indirect calorimetry measurements. C.G.F. assisted with the appetitive and eating rate measurements and their interpretation. A.M.G. and R.O. performed the liver fat measurements. M.W. and P.W. analyzed the blood and urine samples. S.T.C., I.R. and M.S. were responsible for the clinical care of the research participants and supervised the day-to-day operation and coordination of the study by V.D., I.G., R.H., L.M., P.V.J., K.R. and A.S. K.D.H. wrote the manuscript and is the guarantor of this work and has full access to all data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors critically revised the draft and approved the final manuscript.

Corresponding author

Correspondence to Kevin D. Hall.

Ethics declarations

Competing interests

C.G. Forde has received reimbursement for speaking at conferences sponsored by companies selling nutritional products, serves on the scientific advisory council for Kerry Taste and Nutrition and is part of an academic consortium that has received research funding from Abbott Nutrition, Nestec and Danone. The other authors declare no competing interests.

Additional information

Peer review information Jennifer Sargent was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Oral glucose tolerance.

Mean blood concentrations in response to 75g oral glucose tolerance tests conducted at the end of the LC and LF diet periods (n=20) with respect to a) glucose, b) insulin, c) lactate, and d) free fatty acids. Data are presented as mean ± SEM.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hall, K.D., Guo, J., Courville, A.B. et al. Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nat Med 27, 344–353 (2021). https://doi.org/10.1038/s41591-020-01209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1038/s41591-020-01209-1

Further reading

  • Impact of carbohydrates, fat and energy density on energy intake

    • R. James Stubbs

    Nature Medicine (2021)

  • Impact of dietary carbohydrate type and protein–carbohydrate interaction on metabolic health

    • Jibran A. Wali
    • , Annabelle J. Milner
    • , Alison W. S. Luk
    • , Tamara J. Pulpitel
    • , Tim Dodgson
    • , Harrison J. W. Facey
    • , Devin Wahl
    • , Melkam A. Kebede
    • , Alistair M. Senior
    • , Mitchell A. Sullivan
    • , Amanda E. Brandon
    • , Belinda Yau
    • , Glen P. Lockwood
    • , Yen Chin Koay
    • , Rosilene Ribeiro
    • , Samantha M. Solon-Biet
    • , Kim S. Bell-Anderson
    • , John F. O'Sullivan
    • , Laurence Macia
    • , Josephine M. Forbes
    • , Gregory J. Cooney
    • , Victoria C. Cogger
    • , Andrew Holmes
    • , David Raubenheimer
    • , David G. Le Couteur
    •  & Stephen J. Simpson

    Nature Metabolism (2021)

Low Carb High Fat Vs Plant Based Diet

Source: https://www.nature.com/articles/s41591-020-01209-1

0 Response to "Low Carb High Fat Vs Plant Based Diet"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel