How to Calculate Power Using Voltage and Current
Electric Current , Electric Power , Electrical Voltage
Electricity and Electric Charge
The most common general formulas used in electrical engineering
● Basic Formulas and Calculations ●
Relationship of the physical and electrical quantities (parameters)
Electric voltage V , amperage I , resistivity R , impedance Z , wattage and power P
Volt V , ampere A, resistance and impedance ohm Ω , and watt W
The nominal impedance Z = 4, 8, and 16 ohms (loudspeakers) is often assumed as resistance R .
Ohm's law equation (formula): V = I × R and the power law equation (formula): P = I × V .
P = power, I or J = Latin: influare, international ampere, or intensity and R = resistance.
V = voltage, electric potential difference Δ V or E = electromotive force (emf = voltage).
Enter any two known values and press "calculate" to solve for the two others. Please, enter only two values.
V comes from "voltage" and E from "electromotive force (emf)". E means also energy, so we choose V .
Energy = voltage × charge. E = V × Q . Some like better to stick to E instead to V , so do it. For R take Z .
The 12 most important Formulas:
Voltage V = I × R = P / I = √ ( P × R ) in volts V Current I = V / R = P / V = √ ( P / R ) in amperes A
Resistance R = V / I = P / I 2 = V 2 / P in ohms Ω Power P = V × I = R × I 2 = V 2 / R in watts W
Power Formula 1 – Electrical power equation: Power P = I × V = R × I 2 = V 2 ⁄ R |
Andr�-Marie Amp�re was a French physicist and mathematician.
The SI unit of measurement of electric current, the ampere, was named after him.
Alessandro Giuseppe Antonio Anastasio Volta was an Italian physicist.
The SI unit of measurement of electric voltage, the volt, was named after him.
Georg Simon Ohm was a German physicist and mathematician.
The SI unit of measurement of electric resistance, the ohm, was named after him.
James Watt was a Scottish inventor and mechanical engineer.
The SI unit of measurement of electric wattage (power), the watt, was named after him.
Power is like all energy sizes primarily a calculated value.
The word "power amplifier" is a misnomer – especially in audio engineering. Voltage and current can be amplified. The strange term "power amplifier" has become understood to mean an amplifier that is intended to drive a load such as a loudspeaker. We call the product of current gain and voltage gain "power amplification". |
Please enter two values, the third value will be calculated.
Please enter two values, the third value will be calculated.
A magic triangle can be used to calculate all formulas easily. You hide with
a finger the value to be calculated. The other two values show then how to do the calculation.
Calculations: Ohm's law - Ohm's magic triangle
Measurement of input impedance and output impedance
ALTERNATING CURRENT (AC) ~
V l = line voltage (volts), V p = phase voltage (volts), I l = line current (amps), I p = phase current (amps)
Z = impedance (ohms), P = power (watts), φ = power factor angle, VAR = volt-amperes (reactive)
Current (single phase): I = P / V p×cos φ | Current (3 phases): I = P / √3 V l×cos φ or I = P / 3 V p×cos φ |
Power (single phase): P = V p×I p×cos φ | Power (3 phases): P = √3 V l×I l×cos φ or P = √3 V p×I p×cos φ |
The apparent power S is calculated according to Pythagoras, the active power P and reactive power Q . S = √( P 2 + Q 2)
DC power formulas
Voltage V in (V) calculation from current I in (A) and resistance R in (Ω):
V (V) = I (A) × R (Ω)
The power P in (W) calculation from voltage V in (V) and current I in (A):
P (W) = V (V) × I (A) = V 2 (V) / R (Ω) = I 2 (A) � R (Ω)
AC power formulas
The voltage V in volts (V) is equal to the current I in amps (A) times the impedance Z in ohms (Ω):
V (V) = I (A) � Z ((Ω) = (| I | × | Z |) and (θ I + θ Z)
The apparent power S in volt-amps (VA) is equal to the voltage V in volts (V) times the current I in amps (A):
S (VA) = V (V) � I (A) = (| V | × | I |) and (θ V − θ I)
The real power P in watts (W) is equal to the voltage V in volts (V) times current I in amps (A) times the
power factor (cos φ):
P (W) = V (V) × I (A) × cos φ
The reactive power Q in volt-amps reactive (VAR) is equal to the voltage V in volts (V) times the current I
in amps (A) time the sine of the complex power phase angle (φ):
Q (VAR) = V (V) × I (A) × sin φ
The power factor (FP) is equal to the absolute value of the cosine of the complex power phase angle (φ):
PF = | cos φ |
| ||
Quantity | Name | Definition |
frequency f | hertz (Hz) | 1/s |
force F | newton (N) | kg·m/s² |
pressure p | pascal (Pa) = N/m² | kg/m·s² |
energy E | work joule (J) = N·m | kg·m²/s² |
power P | watt (W) = J/s | kg·m²/s³ |
electric charge Q | coulomb (C) = A·s | A·s |
voltage V | volt (V)= W/A | kg·m²/A·s³ |
current I | ampere (A) = Q/s | A |
capacitance C | farad (F) = C/V = A·s/V = s/Ω | A²·s4/kg·m² |
inductance L | henry (H) = Wb/A = V·s/A | kg·m²/A²·s² |
resistance R | ohm (Ω) = V/A | kg·m²A²·s³ |
conductance G | siemens (S) = A/V | A²·s³/kg·m² |
magnetic flux Φ | weber (Wb) = V·s | kg·m²/A·s² |
flux density B | tesla (T) = Wb/m² = V·s/m² | kg/A·s² |
The flow of electric charge Q is referred to as an electric current I. The amount of charge per unit time
is the change in electric current. A current flows at a constant value I. during the time t , it transports
the charge Q = I × t. For a temporally constant power, the relationship between the charge and current:
I = Q / t or Q = I × t. Through this relationship, the basic units of amps and second the Coulomb in
International System of Units is set. The Coulomb unit can be represented as 1 C = 1 A × s.
Charge Q , (unit in ampere-hours Ah), discharge current I , (unit in amperes A), time t , (unit in hours h).
In acoustics we have an " Acoustic equivalent for ohm's law "
Relationships of acoustic sizes associated with plane progressive sound waves
Conversions of many units, like power and energy
prefixes | length | area | volume | weight | pressure | temperature | time | energy | power | density | velocity | acceleration | force
[top of page]
How to Calculate Power Using Voltage and Current
Source: http://www.sengpielaudio.com/calculator-ohm.htm
0 Response to "How to Calculate Power Using Voltage and Current"
Post a Comment